## Regulatory Update/ COVID-19 Ventilation and IAQ Strategies

Marwa Zaatari, PhD

enVerid Systems

March 28, 2020

# Agenda

- The challenge
- What is new and proposed in 62.1 2019?
  - VRP
  - IAQP
- COVID-19 Strategies and Update





## ASHRAE Standard 62.1



## ASHRAE Standard 62.1 Overview

- ASHRAE Std. 62.1: Ventilation Rate Procedure (VRP)
  - PRESCRIPTIVE



ANSI/ASHRAE Standard 62.1-2016 (Supersedes ANSI/ASHRAE Standard 62.1-2013) Includes ANSI/ASHRAE addenda listed in Appendix K

for Acceptable

Indoor Air Quality

Ventilation

- ASHRAE Std. 62.1: Indoor Air Quality Procedure (IAQP) since 1979\*
  - PERFORMANCE-BASED
  - Energy conservation
  - Less outdoor air pollution



See Appendix K for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, and the American National Standards Institute.

This Standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for imply, documented, consensus action on regulests for danage to any part of the Standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE website (www.ashrae.org) or in paper form from the Senior Minager of Standards. The tatest edition of an ASHRAE Standard may be purchased from the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tuilie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders(i)[ashrae.org. Fax: 878-339-2129. Telephone: 404-838-8400 (worldwide), or tool free 1-800-527-4723 (for orders in US and Canad). For reprint permission, go to www.ashrae.org/permission.

© 2016 ASHRAE ISSN 1041-2336



This file is licensed to Marwa Zaatari (mzaatari@enverid.com). Download Date: 5/17/2016

# What is new in 62.1 – VRP?

### VRP – 2019 Unusual sources

• Published in 2019: when the engineer is in doubt of the indoor/outdoor pollutants sources

 $\rightarrow$  the engineer <u>must use</u> <u>IAQP + air cleaning.</u> → Acknowledging that the ventilation rate procedure <u>is inferior</u> to the Indoor Air Quality procedure in terms of risk on the engineer/IAQP

**6.2.2.1.2 Source Strengths.** The Ventilation Rate Procedure minimum rates are based on contaminant sources and source strengths that are typical for the listed occupancy categories. Where unusual sources are expected, the additional ventilation or air cleaning required shall be calculated using Section 6.3.6 of the IAQ procedure or criteria established by the Environmental Health and Safety (EHS) professional responsible to the owner.

### VRP – 2019 Ventilation Efficiency

- Elimination of Table
  6.2.5.2 System
  Ventilation Efficiency
- Replacing with two new equations based on diversity

### $E_v = 0.88 \text{*}\text{D} + 0.22$ for D<0.60 (6.2.5.3.1A)

### $E_v = 0.75$ for D≥0.60 (6.2.5.3.1B)

#### **TABLE 6.2.5.2 System Ventilation Efficiency**



- "Max (Z<sub>p2</sub>)" refers to the largest value of Z<sub>p2</sub>, calculated using Equation 6.2.5.1, among all the ventilation zones served by the system.
- 2. For values of Max  $(Z_{pz})$  between 0.15 and 0.55, the corresponding value of  $E_v$  may be determined by interpolating the values in the table.
- 3. The values of  $E_v$  in this table are based on a 0.15 average outdoor air fraction for the system. For systems with higher values of the average outdoor air fraction, this table may result in unrealistically low values of  $E_v$  and the use of Normative Appendix A may yield more practical results.

### No changes to Appendix A method

### VRP – 2019 Demand Control Ventilation

- Accuracy = ±75 ppm at 600 and 1000 ppm
- Sensors shall be factory calibrated
- Sensors shall be certified that they don't require calibration not more frequently than 5 years
- Sensor failure controls



### Addendum al to 62.1-2016

#### Add new Section 6.2.7.1.3 as shown. Renumber the existing sections as appropriate.

**6.2.7.1.3.** Where  $CO_2$  sensors are used for DCV, the  $CO_2$  sensors shall be certified by the manufacturer to be accurate within plus or minus 75 ppm at a 600 ppm and 1000 ppm concentration when measured at sea level at 25°C. Sensors shall be factory calibrated and certified by the manufacturer to require calibration not more frequently than once every 5 years. Upon detection of sensor failure, the system shall provide a signal that resets the ventilation system to supply the required minimum quantity of outdoor air ( $V_{bz}$ ) to the breathing zone for the design zone population ( $P_2$ ).

VRP – 2019 Simplified Ventilation Rate for existing buildings

 Simplified Ventilation Rate Table for Existing Buildings

### $\underline{V_{target}} = \underline{\Sigma}_{all \ zones} \underline{A_z \times R_s}$ (D2)

#### where

- $\underline{A_{\underline{z}}} = \underline{\text{zone floor area, the net occupiable floor area of the}}{\underline{\text{ventilation zone, ft}^2(\underline{\text{m}}^2)}$
- $\underline{R}_{\underline{s}} = \frac{\text{outdoor airflow rate required per unit area as}}{\text{determined from Table D2}}$

|                                               | Outdoor Air Rate R <sub>s</sub> |                    |  |
|-----------------------------------------------|---------------------------------|--------------------|--|
| Educational Facilities                        | cfm/ft <sup>2</sup>             | L/s·m <sup>2</sup> |  |
| Classrooms (ages 5-8)                         | 0.65                            | 0.33               |  |
| Classrooms (age 9 plus)                       | 0.82                            | 0.41               |  |
| Computer lab                                  | 0.65                            | 0.33               |  |
| Media center                                  | 0.65                            | 0.33               |  |
| Music/theater/dance                           | 0.72                            | 0.36               |  |
| Multi-use assembly                            | 1.42                            | 0.71               |  |
| General                                       |                                 |                    |  |
| Conference/meeting                            | 0.44                            | 0.22               |  |
| Corridors                                     | 0.11                            | 0.06               |  |
| Office Buildings                              |                                 |                    |  |
| Breakrooms                                    | 0.65                            | 0.33               |  |
| Main entry lobbies                            | 0.19                            | 0.10               |  |
| Occupiable storage rooms for<br>dry materials | 0.12                            | 0.06               |  |
| Office space                                  | 0.15                            | 0.08               |  |
| Reception areas                               | 0.37                            | 0.19               |  |
| Telephone/data entry                          | 0.63                            | 0.32               |  |
| Public Assembly Spaces                        |                                 |                    |  |
| Libraries                                     | 0.30                            | 0.15               |  |

### **Outpatient Facilities**

| Outpatient health care facilities a,b | Physical therapy exercise area |
|---------------------------------------|--------------------------------|
| General examination room              | Physical therapeutic pool area |
| Psychiatric examination room          | Speech therapy room            |
| Psychiatric consultation room         | Prosthetics and orthotics room |
| Psychiatric group room                | Dental operatory               |
| Psychiatric seclusion room            | Other dental treatment areas   |
| Dirthing room                         | Class 1 imaging rooms          |
| Birtning room                         |                                |
| Urgent care examination room          |                                |
| Urgent care treatment room            |                                |
| Urgent care triage room               |                                |
| Urgent care observation room          |                                |
| Physical therapy individual room      |                                |

### **Animal Facilities**

Animal procedure room

Animal exam room

(veterinary office)

Small-animal-cage room (static cages)

Small-animal-cage room (ventilated cages)

Large-animal holding roor

Animal imaging (MRI/CT/PET)

Animal operating rooms

Animal postoperative

recovery room

Animal preparation rooms

Animal surgery scrub

<u>Necropsy</u>

### VRP – 2019 Addition of outpatient and animal facilities

# What is proposed in 62.1 - IAQP?

## What is proposed in ASHRAE IAQP 2019/2020?



## IAQP Methodology - 2016

The IAQP allows compliance based on:

- 1. Objective Evaluation (contaminants concentrations)
- 2. Subjective Evaluation (survey)



EPA methods

## IAQP Methodology - 2016

The IAQP allows compliance based on:

- 1. Objective Evaluation (contaminants concentrations)
- 2. Subjective Evaluation (survey)



















cognizant authority

| Compound or PM <sub>2.5</sub> | Cognizant Authority       | Design Target           |
|-------------------------------|---------------------------|-------------------------|
| Acetaldehyde                  | Cal EPA CREL (June 2016)  | 140 ug/m <sup>3</sup>   |
| Acetone                       | AgBB LCI                  | 1,200 ug/m <sup>3</sup> |
| Benzene                       | Cal EPA CREL (June 2016)  | 3 ug/m <sup>3</sup>     |
| Dichloromethane               | Cal EPA CREL (June 2016)  | 400 ug/m <sup>3</sup>   |
| Formaldehyde                  | Cal EPA CREL (2004)       | 33 ug/m <sup>3</sup>    |
| Naphthalene                   | Cal EPA CREL (June 2016)  | 9 ug/m <sup>3</sup>     |
| Phenol                        | AgBB LCI                  | 10 ug/m <sup>3</sup>    |
| Tetrachloroethylene           | Cal EPA CREL (June 2016)  | 35 ug/m <sup>3</sup>    |
| Toluene                       | Cal EPA CREL (June 2016)  | 300 ug/m <sup>3</sup>   |
| 1,1,1-trichloroethane         | Cal EPA CREL (June 2016)  | 1000 ug/m <sup>3</sup>  |
| Xylene, total                 | AgBB LCI                  | 500 ug/m <sup>3</sup>   |
| Carbon monoxide               | USEPA NAAQS               | 9 ppm                   |
| PM <sub>2.5</sub>             | USEPA NAAQS (annual mean) | 12 ug/m <sup>3</sup>    |
| Ozone                         | USEPA NAAQS               | 70 ppb                  |
| Ammonia                       | Cal EPA CREL (June 2016)  | 200 ug/m <sup>3</sup>   |







## Summary of ASHRAE Testing Standards

© 2016 ASHRAE

Standard 145.2

### Standard 52.2



Tests for: particle filtration 

## Sorbent-based Air Cleaning Performance

Example: Ozone test data from RTI:

- Efficiency = 70%
- By-product VOCs and ozone concentrations = 0 ppb



Time after Challenge elevated to high concentration, min





### IAQP: Objective Evaluation Steps

Mass Balance Analysis





Outdoor air is non-attainment for NAAQS or polluted

Buildings with existing capacity limitations / Densification (aging of HVAC equipment, re-purpose of the space, adding more people

New buildings with limited HVAC capacity (e.g., geothermal projects)

Identified COC concentrations are high, requiring additional ventilation

Building is located in cold or hot/humid climates

LEED buildings

## Summary

- James has a 200 sf office
- What ventilation is required?
- Appendix F 200 \* 0.15 = 30 cfm
- Appendix L 200 \* 0.11 = 22 cfm
- Vbz Equation 6.2.2.1 1 \* 5 + 0.06 \* 200 = 17 cfm
- Vot = 17 cfm (Assume Ez = 1)
- Personal Ventilation Vot = (1 \* 5)/1.5 + 0.06 \* 200 = 15.3 cfm
- Dynamic Reset?
  When James is not present during working hours Vot = 12 cfm
- Natural Ventilation? One window or two must be open depending
- IAQP? Vot = 5 cfm Assuming building sources are managed to below limits

## Graph of Mechanical Ventilation, Vot

ASHRAE Standard 62.1



# COVID-19

## Background on COVID-19

- COVID-19 Size ~120nm in diameter
- Enveloped RNA viruses
- RNA is the target of most of the current COVID-19 tests (RT-PCR protocol)
  - RNA is a stable molecule that can be detected after a long time (weeks) even if the virus is inactive
- COVID-19 survives outside the body only within droplets or aerosols (the virus membrane will dry and break outside of those particles)







Consensus from WHO and CDC is airborne transmission is not driving the pandemic.

- Anne Schuchat, principal deputy director at the U.S. CDC, "there is no current evidence to suggest that the coronavirus spreads through air-handling systems".
- There is emerging evidence that COVID-19 can exist as an aerosol.
- As long as this route of transmission is not fully known, we have to take seriously the fact that COVID-19 can be transported via air.

## Current Research on COVID-19 Airborne Transmission

- 1) Singapore. Field measurements in hospital rooms with patients with COVID-19. *12 air exchange rate.* 
  - No virus in the air
  - Virus on ventilation fans
- China, Wuhan University. Field measurements in hospital rooms with patients with COVID-19.
  - Low concentration of virus in the air
  - Highest concentration of virus near patient toilets. "Receptors for coronavirus exist not only in the airways but also in the gastrointestinal tract, so cells there can become infected, shedding virus into fecal material. "Author suggest sanitization of surfaces.

- 3) Nebraska. Field measurements in hospital rooms with patients with COVID-19.
  - Virus in the air (in most samples)
- 4) Lab study. Used a high-powered nebulizer to produce aerosols.
  - Detected viable virus in aerosols for up to three hours.
  - "The high-powered nebulizer used to produce the aerosol may mimic what occurs during procedures such as intubation and not what is generated from coughing and sneezing. " Same recommendation from WHO.



Can HVAC System Design and Operation Prevent COVID-19 Airborne Transmission?

Filtration? **YES** 

- > HVAC filters are designed to efferently remove airborne particles from the air.
- > The higher the MERV (Minimum efficiency Rated Value) the higher the filtration.
- > HEPA filters can probably eliminate all airborne viruses.

UV? **YES** 

> UV is a proven technology that can effectively disinfect the air.

> Need to be properly design, installed and maintain.

Electronic air Cleaners? NO

"None of these technologies have been proven to reduce infection in real buildings, even if they have promise based on tests in a laboratory or other idealized settings. Some of them have substantial concerns about secondary issues (such as production of ozone, a respiratory irritant)."

https://www.nafahq.org/covid-19-corona-virus-and-air-filtration-frequently-asked-questions-faqs/

https://www.esmagazine.com/articles/100270-can-building-air-filtration-protect-me-from-getting-covid-19

Can HVAC System Design and Operation Prevent COVID-19 Airborne Transmission?

Outside air ventilation? YES, BUT

- > Outside air ventilation has a smaller contribution to virus removal compared to filtration
- Increasing ventilation will make it hard to keep the building at 50% RH. RH at 50% is strongly related to virus inactivation.
- Particulate matter (PM) can serve as a carrier for virus aerosols, therefore increasing ventilation may increase PM and lead to an increase in the number of virus aerosols indoor.

## Filtration is the Dominate Mechanism for Virus Removal



### **Filtration:**

- Using higher MERV have a positive impact on decreasing infection risk.
- The higher the MERV, the smaller the effect of OA. OA has 0 effect when HEPA is used.
- HEPA offers similar infection risk reduction than MERV11 at high air exchange rate(>2.5 ACH) and less than 4% better risk than MERV11 at lower air exchange rate (<2.5 ACH)

### Filtration is the Dominate Mechanism for Virus Removal



### Ventilation:

When using MERV11 or above, there is no difference in risk between IAQP and VRP.





## Why Increased Ventilation might not be a good approach (1)

### HVAC systems need to maintain RH near 50% to enable COVID-19 fast inactivation

- Airborne COVID 19 survives much longer at RH <40% and RH >65%
- Increasing OA ventilation will undermine the ability to maintain RH near 50%, resulting in:
  - Higher humidity (>65%) when it is hot or rainy
  - Lower humidity (<40%) when it is cold and dry
- This can lead to a longer time in which COVID-19 is viable and increase probability of airborne transmission.



## Why Increased Ventilation might not a good approach (2)

# PM can serve as virus carriers - Increased OA ventilation will increase PM indoors and therefore the probability of airborne virus transmission



http://www.simaonlus.it/wpsima/wp-content/uploads/2020/03/COVID\_19\_position-paper\_ENG.pdf

#### https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156797/#!po=3.84615

## Why Increased Ventilation might not a good approach (2)

A new study from Harvard Public School of health found statistically significant evidence that increase of  $1 \mu g/m^3$  in long-term  $PM_{2.5}$  exposure is associated with a 15% increase in the COVID-19 mortality rate.



https://projects.iq.harvard.edu/files/covid-pm/files/pm and covid mortality.pdf

# COVID-19 deaths per 1 million

## Thank you!

Marwa Zaatari

mzaatari@enverid.com

# Bonus Slides: Electronic Air Cleaners

## Electronic Air Cleaners

### Lots of names:

- Photocatalytic Oxidation (PCO)
- Photocatalytic Activation
- Ionization
- Bi-polar ionization (BPI)
- Needlepoint ionization
- Plasma
- Ozone generator
- Activated Oxygen
- Surface irradition
- High voltage coronas
- Hydroxlation
- Precipitators

- But the mechanism is always the same:
  - 1. Apply high energy to air
  - 2. Creates new, highly reactive chemical species
  - 3. Species react with contaminants & particles
- Why so many names?
  - No industry rules for product names
  - Each vendor wants to appear different

### Electronic Air Cleaners



Ions are blown into space to chemically react with molecular contaminants and/or react with particles to increase their weight so they drop below breathing zone

# Chemistry Fact #1: Free Radicals & Ozone Produced



Produce ions called Reactive Oxygen Species (ROS, or radicals) and ozone:

- Superoxide anion radical:  $O_2 + e^- \rightarrow O_2^-$
- Hydrogen peroxide:  $2 H^+ + O_2^- + O_2^- \rightarrow H_2O_2 + O_2$
- Hydroxyl radical:  $H_2O_2 + e^- \rightarrow HO^- + {}^{\bullet}OH$
- Ozone:  $O_2 + O \rightarrow O_3$

### Ozone and ROS cause:

- Respiratory disease
- Cancer
- Auto-immune disease

### Chemistry Fact #2: Indiscriminate & Unpredictable Reactions *Electronic Air Cleaners*





## Chemistry Fact #3: Not all contaminants addressed

Electronic Air Cleaners



## Chemistry Fact #4: Measuring Efficiency is Difficult

Electronic Air Cleaners

### 1. Efficiency changes over distance from cleaner



# Numerous studies show electronic air cleaners do not work or are hazardous

- https://www.cleanairplus.com/blogs/blogs-and-news/ozone-caused-by-ionic-airpurifiers-poses-health-risks
- University of California Irvine. "Indoor Air Purifiers That Produce Even Small Amounts Of Ozone May Be Risky For Health." ScienceDaily. ScienceDaily, 10 May 2006.
   <www.sciencedaily.com/releases/2006/05/060509235740.htm</li>
- http://www.nbcnews.com/id/7391185/ns/health-health\_care/t/consumer-reports-callsair-purifier-unhealthy/#.WUGtZGj1DIE
- http://www.allergyclean.com/formaldehyde-increases-through-exposure-to-ozonefrom-ionizers-and-ozone-generators/
- https://www.biotek.com/resources/white-papers/an-introduction-to-reactive-oxygenspecies-measurement-of-ros-in-cells/
- https://en.wikipedia.org/wiki/Reactive oxygen species

## Example Study: CDC found electronic ionizers produce ozone

| Device                                             | Company                  | Technology                                                | Back-<br>ground<br>Concen-<br>tration<br>(ppb) | Unit<br>Concen-<br>tration<br>(ppb) | 9 | Ozone Lev<br>50ppb |
|----------------------------------------------------|--------------------------|-----------------------------------------------------------|------------------------------------------------|-------------------------------------|---|--------------------|
| Nanobreeze, Unit #2                                | NanoTwin<br>Technologies | Photocatalytic<br>Oxidation                               | 6.9                                            | 10.3                                |   |                    |
| Prototype                                          | ActiveTek                | ActivePure<br>Technology (H <sub>2</sub> O <sub>2</sub> ) | 4                                              | 115.9                               |   |                    |
| AF1000, Ser No.<br>008011                          | Air Fantastic            | Quadruple Ion<br>Technology                               | 6.7                                            | 287.9                               |   |                    |
| AF1000, Ser No.<br>002813                          | Air Fantastic            | Quadruple Ion<br>Technology                               | 4.9                                            | 305.5                               |   |                    |
| AFMini, Ser No.<br>008033                          | Air Fantastic            | Quadruple Ion<br>Technology                               | 4.9                                            | 745.4                               |   |                    |
| AFMini, Ser No.<br>008031                          | Air Fantastic            | Quadruple Ion<br>Technology                               | 5.5                                            | 459.3                               |   | EVALUA             |
| Prototype                                          | AERISA                   | Cold Plasma                                               | 4.4                                            | 42.8                                |   | CONCEN             |
| AtmosAir T-400 Ser<br>No. 401107MTG1220            | Clean Air Group          | Bipolar Ionization                                        | 3.5                                            | 892.6                               |   |                    |
| AtmosAir T-400 Ser<br>No. 401107MTG1227            | Clean Air Group          | Bipolar Ionization                                        | 5.1                                            | 1297                                |   |                    |
| AirOCare, Ser No<br>0033, with screen <sup>*</sup> | AirOcare                 | Reactive Oxygen<br>Species                                | 5.5                                            | 88.5                                |   |                    |
| AirOCare, Ser No<br>0033, no screen*               | AirOcare                 | Reactive Oxygen<br>Species                                | 5.5                                            | 61.6                                |   |                    |
| AirOCare, Ser No<br>0034, with screen <sup>*</sup> | AirOcare                 | Reactive Oxygen<br>Species                                | 3.4                                            | 115.5                               |   |                    |
| AirOCare, Ser No<br>0034, no screen*               | AirOcare                 | Reactive Oxygen<br>Species                                | 3.4                                            | 82.5                                |   |                    |

#### EVALUATION OF MITIGATION STRATEGIES FOR REDUCING FORMALDEHYDE CONCENTRATIONS IN UNOCCUPIED FEDERAL EMERGENCY MANAGEMENT AGENCY-OWNED TRAVEL TRAILERS

Michael G. Gressel, PhD, CSP Lynn Wilder, MSHyg, CIH

Division of Environmental Hazards and Health Effects National Center for Environmental Health Centers for Disease Control and Prevention

### Example study: CARB found electronic air cleaners can increase VOCs, formaldehyde, and/or ozone

### Evaluation of Pollutant Emissions from Portable Air Cleaners

Draft Final Report: Contract No. 10-320

Prepared for the California Air Resources Board and the California Environmental Protection Agency **Research Division** PO Box 2815 Sacramento CA 95812

Table 5.4.4: Pollutant concentration change  $\Delta C_i$  (µg m<sup>-3</sup>) in Scenario 2 based on results from Phase 2. Negative changes (concentration reductions) are shown in black, and positive changes (increases in concentration) are shown in red

|              | Photocatalysts |      | Plasma    | lc        | nizers  | 400 F<br>heater |      |  |
|--------------|----------------|------|-----------|-----------|---------|-----------------|------|--|
|              | PAC1           | PAC2 | BAC3      | BAC4      | P       | AC5             | PAC6 |  |
|              | FACT           | FACZ | FACS      | FAC4      | ionizer | ion + heat      |      |  |
| ozone        | -              | -    | 22 - 191  | 0.6 – 5.5 | -       | -               | -    |  |
| SOA          | -              |      | 0.4 - 6.7 |           | -       | -               | -    |  |
| VOCs         |                |      |           |           |         |                 |      |  |
| ethanol      |                | 11   | -3.6      | -359      | 143 -   | 4.9             | 7.3  |  |
| hexane       | -388           |      | -77       | -272      | 265     | 134             | -64  |  |
| butanal      | -20            |      | -15       | -15       |         | 41              | -20  |  |
| benzene      | -23            | 8.7  | -25       | -66       | 27      | 28              | -16  |  |
| TCE          | -31            | 43   | -49       | -81       | 33      | 24              | -19  |  |
| toluene      | -53            | 98   | -114      | -178      | 64      | 115             | -40  |  |
| pyridine     | -6.7           |      | -44       | -60       | 13      | 30              | -90  |  |
| o-xylene     | -25            | 27   | -61       | -42       | 47      | 117             | -108 |  |
| styrene      | -4.7           | 8.0  | -89       | -15       | 27      | 89              | -34  |  |
| d-limonene   | -5.5           |      | -182      | -14       | 74      | 403             | -26  |  |
| formaldehyde | 22 -           | 20   | -24       | 17        | -33     | -152            | -8.0 |  |
| acetaldehyde | •              |      |           |           |         |                 |      |  |
| acetone      | -6.0           | -3.3 | 57 🔺      |           |         | -59             |      |  |
| benzaldehyde |                |      | 74        |           |         |                 |      |  |
| TOTAL VOCs   | -528           | 213  | -553      | -1086     | 661     | 895             | -422 |  |

The compounds listed in italics were not present in the challenge mixture.

## Example study, NY department of health

### Report of Bureau of Toxic Substance Assessment Testing the AtmosAir Bi-Polar Ionization Product at the Glens Falls High School, Glens Falls, NY on February

### Results Published in 2018 in ASHRAE Journal:

- 1. The average indoor ozone concentrations more than doubled when the corona discharge was on.
- 2. The concentrations of the aldehydes and acetone increased when the corona discharge was operating
- 3. Ultrafine particles counts increased following the deployment of limonene in the classroom